Genome-Wide Profiling of Breast Cancer: History and Lessons from Studies before NGS Era

WONSHIK HAN, M.D., PH.D. ASSOCIATE PROFESSOR CANCER RESEARCH INSTITUTE AND DEPARTMENT OF SURGERY, SEOUL NATIONAL UNIVERSITY COLLEGE OF MEDICINE

Conventional factors that Tx decision was based on

Tumor size

Lymph node metastasis

Histological grade

► ER, PR, HER-2

Tumor size

How old is the tumor?

How fast the tumor grows (before detection)

Lymph node involvement

Better predictor of prognosis than the tumor size

- It can happen by chance (it also means how old the tumor is) not by the ability of the tumor to metastasize
- Anyway it means tumor can be separated from his family and move further and live alone for at least limited time

Histologic grade

physiognomy

Molecular profiling

Molecular portraits of breast cancer (source: Perou & Sorlie et al, Nature 2000)

Intrinsic molecular classification (Perou and Sorlie)

- Intrinsic genes: Genes whose expression vary more between tumors than between repeated samples of the same tumors
- Hierarchical clustering (Unsupervised analysis)
- ER+ and ER-negative tumors are fundamentally distinct
- At least four molecular subtypes of breast ca
- 3 important gene groups: ER and ER related genes, proliferation genes, and HER-2 amplicon genes in chr17
- The most stable and reproducible separation was basal-like tumors

Intrinsic molecular classification: limitations

- Intrinsic gene is real?
- How to classify a newcomer
- How many subtypes exist?
- Is it clinically useful? (prognostic and predictive value) beyond just ER, PR, HER-2, Ki67?

Characterization of molecular subtypes of Korean breast cancer: An ethnically and clinically distinct population

WONSHIK HAN¹, MONICA NICOLAU², DONG-YOUNG NOH¹ and STEFANIE S. JEFFREY³

Perou CM, SABCS 2009

Mammary development meets cancer genomics

Aleix Prat & Charles M Perou

Nature Medicine 2009

Prognostic Signatures

AIMING TO IDENTIFY PATIENTS WITH DISEASE OF SUFFICIENTLY GOOD PROGNOSIS TO ALLOW THE SAFE OMISSION OF ADJUVANT CHEMOTHERAPY

Only one out of 100 women will benefit from adjuvant chemo-therapy

Most common breast cancer today: T1, N0, ER+, Grade 2.

Reis-Filho and Pusztai, Lancet 2011

Commercially available multi-gene expression signatures in breast cancer

MammaPrint (70-gene signature)

Veridex 76-gene

- Oncotype DX (21-gene singnature)
- ▶ Breast Cancer Index (HoxB13:IL17BR, Theros[™])
- Genomic grade index (MapQuant Dx)
- ► PAM50 (Prosigna[™])

Commercially available prognostic multigene signatures for breast cancer

- Despite differences in the genes that compose each of the signatures, they largely identify the same group of patients as having poor prognosis disease (Fan et al. NEJM 2006)
- The unifying characteristic is the high expression of proliferation-related genes
- Almost invariably classify ER-negative cancers as of poor prognosis
- Tumor size and lymph-node status provide prognostic information that is independent of that offered by prognostic signatures

Information beyond ER, PR, HER-2, and Ki67 might be limited

Cuzick et al. JCO 2011

70-gene signature (MammaPrint)

- FDA approved
- Could reduce high risk group from 85% to 60%
- Level II of evidence from retrospective studies
- Require fresh or frozen samples
- Discriminatory power for ER-negative disease is very small (only 0–5% of patients with ER-negative disease are classified as having good prognosis)

EORTC-BIG MIDACT (MIcroarray for Node negative Disease may Avoid ChemoTherapy) Trial Design 6,000 Node-negative breast cancer

Panel of 21 genes for the Recurrence-Score Algorithm Real time-PCR of 21 genes from FFPE

21-gene score (Oncotype DX)

- Can use FFPE tissue sections
- Level I evidence
- Incorporated in NCCN guideline
- Recommended in ASCO guideline
- Expanded evidence in patients treated AI and patients have up to 3+ LNs (RxPONDER trial)
- Uncertain "intermediate" risk group (TAILORx trial)
- A model combining RS with traditional anatomical pathological factors could be more prognostic than RS alone

PAM50 (ProsignaTM)

ROR is derived from a algorithm based on the PAM50 gene signature, intrinsic subtype, tumor size, and proliferation score

Better differentiation of intermediate- and higher-risk groups of Oncotype DX

Dowsett M et al. JCO 2013

Multigene predictors of response to chemotherapy

	Number			Chemosensitivity						
Authors	of cases ^a	Regimen	Chemotherapy	evaluation	Technology	Method	Signature	NPV	PPV	Accuracy
Chang <i>et al.</i> [116]	24 discovery 6 validation	Neoadjuvant	Docetaxel	Clinical response	cDNA microarray	Supervised	92 genes	83%	92%	88%
Ayers <i>et al.</i> [90]	24 discovery 12 validation	Neoadjuvant	T/FAC	pCR	cDNA microarray	Supervised	74 genes	73%	100% (3/3)	78%
lwao- Koizumi <i>et al.</i> [91]	44 discovery 26 validation	Neoadjuvant	Docetaxel	Clinical response	High- throughput RT-PCR	Supervised	85 genes	90.9%	73.3%	80.7%
Gianni <i>et al.</i> [70]	89 discovery 92 validation	Neoadjuvant	TA	pCR	qRT-PCR/ DNA microarray	Supervised	86 genes	-	-	-
Hess <i>et al.</i> [92]	82 discovery 51 validation	Neoadjuvant	T/FAC	pCR	cDNA microarray	Supervised	30 genes	96%	52%	76%
Thuerigen <i>et al.</i> [93]	52 discovery 48 validation	Neoadjuvant	G-ET	pCR	cDNA microarray	Supervised	512 genes	95%	64%	88%
Farmer et al. [103]	63	Neoadjuvant	FEC	pCR	cDNA microarray	Metagene approach	Stromal metagene	81%	57%	65%

There is no validated and commercially available gene signature to predict response to a specific therapeutic agent

Colombo et al. Breast Cancer Research 2011

Sensitivity to endocrine therapy (SET) index

- Defined from 165 genes
 coexpressed with ESR1 in 437
 microarray profiles
- It predicted survival benefit from adjuvant endocrine therapy, not inherent prognosis

Symmans et al. JCO 2010

The lessons from Genome wide profiling studies

- Gene expression analysis has changed the way breast cancer is perceived, and it is no longer regarded as a single disease
- ER+ and ER-negative cancers represent molecularly and clinically distinct diseases
- Proliferation genes and expressions are important as a prognostic factor for ER+ cancers
- Multi-gene prognostic signatures provide information that is complementary to that provided by anatomical prognostic variables
- However, they have limited clinical value for patients with ERnegative disease
- The knowledge acquired from microarray-based gene expression profiling studies will help in the development of the next generation of genomic predictors